Skip to main content

Advertisement

Log in

Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia

Quality management in regional deep hyperthermia

Leitlinie für die klinische Applikation, die Dokumentation und die Analyse klinischer Studien bei der regionalen Tiefenhyperthermie

Qualitätsmanagement bei der regionalen Tiefenhyperthermie

  • Guideline
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Objectives

These guidelines contain recommendations for the implementation of quality-assured hyperthermia treatments. The objective is to guarantee an internationally comparable and easily understandable method for hyperthermia treatment and for the subsequent scientific analysis of the treatment results. The guidelines describe “regional deep hyperthermia” (RHT) and MR-controlled “partial body hyperthermia” (PBH) of children, adolescents and adult patients. Hyperthermia in terms of these guidelines is defined as a treatment combining chemotherapy and/or radiation therapy.

Methods

These guidelines are based on practical experience from several hyperthermia centres in Europe. Our collaborative effort has ensured coordinated standards and quality control procedures in regional deep and partial body hyperthermia. The guidelines were developed by the Atzelsberg Research Group of the IAH (http://www.hyperthermie.org) of the German Cancer Society (“Deutsche Krebsgesellschaft”) to specifically ensure that the multi-institutional studies initiated by the Atzelsberg Research Group are executed following a single, uniform level of quality.

Results

The guidelines contain recommendations for procedural methods for treatment using hyperthermia. They commence with diagnosis, which is followed by preparation and treatment and concludes with standardised analysis for the reporting of results.

Zusammenfassung

Hintergrund

Diese Leitlinie enthält Empfehlungen zur Durchführung von qualitätsgesicherten Hyperthermiebehandlungen. Ziel ist, ein vergleichbares und nachvollziehbares Vorgehen bei der Behandlung und der wissenschaftlichen Auswertung der Hyperthermie zu gewährleisten. Die Leitlinie beschreibt die „Regionale Tiefenhyperthermie“ (RHT) und die „MR-kontrollierte Teilkörperhyperthermie“ (PBH) von Kindern, Jugendlichen und erwachsenen Patienten. Die Hyperthermie im Sinne dieser Leitlinie wird als Kombinationsbehandlung mit einer Chemo- und/oder Strahlentherapie durchgeführt.

Methodik

Die vorgestellte Leitlinie basiert auf praktischen Erfahrungen von mehreren Hyperthermiezentren. Dieses Vorgehens erlaubt gemeinsam abgestimmte Standards in der Anwendung und der Qualitätskontrolle in der Hyperthermie für Studien, die im Rahmen des Atzelsberger Arbeitskreises in der Interdisziplinären Arbeitsgruppe Hyperthermie (http://www.hyperthermie.org) in der Deutschen Krebsgesellschaft und dem Technischen Komitee der „European Society for Hyperthermic Oncology“ (ESHO) entwickelt wurden, um sicher zu stellen, dass multizentrische Studien, die vom Atzelsberger Arbeitskreis entwickelt wurden, nach einem standardisierten, einheitlichen Qualitätsmaßstab durchgeführt werden.

Ergebnisse

Diese Leitlinie enthält Empfehlungen für das Vorgehen bei Hyperthermiebehandlungen von der Indikationsstellung, der Vorbereitung, der Durchführung bis zur standardisierten Auswertung.

Die deutschsprachige Version des Beitrags ist auf SpringerLink unter „Supplemental“ zu finden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

CEM43T90 :

Equivalent minutes at 43 °C

CR:

Complete tumour response

CT:

Computer tomography

CTCAE v4.03:

Common toxicity criteria adverse events

DEGRO:

Deutsche Gesellschaft für Radioonkologie

DFS:

Disease-free survival

E-field:

Electric field

ESHO:

European Society of Hyperthermic Oncology

FE:

Finite element

Gy:

Gray

http:

Hypertext transfer protocol

HTP:

Computer hyperthermia planning

IAH:

Interdisciplinary working group

LEFS:

Local event-free survival

LP:

Local tumour progression

MPG:

German Medizinprodukte Gesetz

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRT:

Magnetic resonance tomography

MTRA:

Technician in radiology (“Medizinisch Technischer Radiologie Assistant”)

OS:

Overall survival

P:

Power

PBH:

Partial body hyperthermia

PET:

Positron emission tomography

PRFS:

Proton resonance frequency

PTV:

Planning target volume

QMHT:

Quality management in hyperthermia (defined in this guideline)

RECIST:

Response evaluation criteria in solid tumors

RHT:

Regional hyperthermia

RHyThM:

Rotterdam Hyperthermia Thermal Modulator

RTOG:

Radiation Therapy Oncology Group

SAR:

Specific absorption rate

TTP:

Time to progression

US:

Ultrasound

References

  1. Balasubramaniam TA, Bowman HF (1977) Thermal conductivity and thermal diffusivity of biomaterials: a simultaneous measurement technique. J Biomech Eng 99:148–154

    Article  Google Scholar 

  2. Bruggmoser G, Bauchowitz S, Canters R et al (2011) Quality Assurance for Clinical Studies in Regional Deep Hyperthermia. Strahlenther Onkol 187(10):605–609

    Article  PubMed  Google Scholar 

  3. Bruijne M de, Holt B van der, Rhoon GC van, Zee J van der (2010) Evaluation of CEM43 degrees CT90 thermal dose in superficial hyperthermia: a retrospective analysis. Strahlenther Onkol 186(8):436–443

    Article  PubMed  Google Scholar 

  4. Canters RA, Franckena M, Paulides MM, Rhoon GC van (2009) Patient positioning in deep hyperthermia: influences of inaccuracies, signal correction possibilities and optimization potential. Phys Med Biol 54:3923–3936

    Article  PubMed  CAS  Google Scholar 

  5. Canters RA, Wust P, Bakker JF, Rhoon GC van (2009) A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia 25:593–608

    Article  PubMed  CAS  Google Scholar 

  6. Chato JC (1968) A method for the measurement of the thermal properties of biological materials. In: Chato JC (ed) Thermal Problems in Biotechnology, ASME symposium series. American Society of Mechanical Engineers, New York

  7. Chato JC (1990) Fundamentals of bioheat transfer. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, New York, p 51

  8. Cooper TE, Trezek DJ (1971) Correlation of thermal properties of some human tissue with water content. Aerospace Med 42:24–27

    PubMed  CAS  Google Scholar 

  9. Craciunescu OI, Stauffer PR, Soher BJ et al (2009) Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Med Phys 36:4848–4858

    Article  PubMed  Google Scholar 

  10. Crezee J, Haaren PM van, Westendorp H et al (2009) Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Int J Hyperthermia 25(7):581–592

    Article  PubMed  CAS  Google Scholar 

  11. Drane CR (1981) The thermal conductivity of the skin of crocodilians. Comp Biochem Physiol 68A:107–110

    Article  Google Scholar 

  12. Dumas A, Barozzi GS (1984) Laminar heat transfer to blood flowing in a circular duct. Int J Heat Mass Trans 27:391–398

    Article  Google Scholar 

  13. Eckert F, Fehm T, Bamberg M, Müller AC (2010) Small cell carcinoma of vulva: curative multimodal treatment in face of resistance to initial standard chemotherapy. Strahlenther Onkol 86(9):521–524

    Article  Google Scholar 

  14. Fatehi D, Bruijne M de, Zee J van der, Rhoon GC van (2006) RHyThM, a tool for analysis of PDOS formatted hyperthermia treatment data generated by the BSD2000/3D system. Int J Hyperthermia 22:173–184

    Article  PubMed  Google Scholar 

  15. Fatehi D, Zee J van der, Notenboom A, Rhoon GC van (2007) Comparison of intratumor and intraluminal temperatures during locoregional deep hyperthermia of pelvic tumors. Strahlenther Onkol 183(9):479–486

    Article  PubMed  Google Scholar 

  16. Franckena M, Fatehi D, Bruijne M de et al (2009) Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 45(11):1969–1978

    Article  PubMed  Google Scholar 

  17. Gabriel C, Gabriel S, Courthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2250

    Article  PubMed  CAS  Google Scholar 

  18. Gabriel S, Lau R-W, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  PubMed  CAS  Google Scholar 

  19. Gabriel S, Lau R-W, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2280

    Article  PubMed  CAS  Google Scholar 

  20. Gellermann J, Wlodarczyk W, Feussner A et al (2005) Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int J Hyperthermia 21:497–513

    Article  PubMed  CAS  Google Scholar 

  21. Gellermann J, Wlodarczyk W, Hildebrandt B et al (2005) Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res 65:5872–5880

    Article  PubMed  CAS  Google Scholar 

  22. Gellermann J, Hildebrandt B, Issels R et al (2006) Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer 107:1373–1382

    Article  PubMed  Google Scholar 

  23. Grayson J (1952) Internal calorimetry in the determination of thermal conductivity and blood flow. J Physiol 118:54–72

    PubMed  CAS  Google Scholar 

  24. Haveman J, Smals OA, Rodermond HM (2003) Effects of hyperthermia on the rat bladder: a pre-clinical study on thermometry and functional damage after treatment. Int J Hyperthermia 19(1):45–57

    Article  PubMed  CAS  Google Scholar 

  25. Hoffmann K-T, Rau B, Wust P et al (2002) Restaging of locally advanced carcinoma of the rectum with MR imaging after preoperative radio-chemotherapy plus regional hyperthermia. Strahlenther Onkol 178:386–392

    Article  PubMed  Google Scholar 

  26. Holmes KR, Ryan W, Chen WW (1983) Thermal conductivity and H2O content in rabbit kidney cortex and medulla. J Therm Biol 8:311–313

    Article  Google Scholar 

  27. Holmes KR, Chen MM (1979) Local thermal conductivity of Para-7 fibrosarcoma in hamster. Advances in Bioengineering, New York: ASME, pp 147–149

  28. Holmes KR, Adams T (1975) Epidermal thermal conductivity and stratum corneum hydration in cat footpad. Am J Physiol 228:1903–1908

    PubMed  CAS  Google Scholar 

  29. Hynynen K, McDannold N (2004) MRI guided and monitored focused ultrasound thermal ablation methods: a review of progress. Int J Hyperthermia 20:725–737

    Article  PubMed  CAS  Google Scholar 

  30. Hua Y, Ma S, Fu Z et al (2011) Intracavity hyperthermia in nasopharyngeal cancer: a phase III clinical study. Int J Hyperthermia 27:180–186

    Article  PubMed  Google Scholar 

  31. Issels RD (2008) Hyperthermia adds to chemotherapy. Eur J Cancer 44(17):2546–2554

    Article  PubMed  CAS  Google Scholar 

  32. Issels RD, Lindner LH, Verweij J et al (2010) Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11(6):561–570

    Article  PubMed  CAS  Google Scholar 

  33. Kok HP, Haaren PM van, Kamer JB van de et al (2005) High resolution temperature based optimisation for hyperthermia treatment planning. Phys Med Biol 50(13):3127–3141

    Article  PubMed  CAS  Google Scholar 

  34. Konstanczak R, Wust P, Sander B et al (1997) Thermometrie durch Messung der chemischen Verschiebung eines Lanthanidenkomplexes. Strahlenther Onkol 173(2):106–116

    Article  PubMed  CAS  Google Scholar 

  35. Kotte A, Leeuwen G van, Bree J de et al (1996) A description of discrete vessel segments in thermal modelling of tissues. Phys Med Biol 41(5):865–884

    Article  PubMed  CAS  Google Scholar 

  36. Kuroda K (2005) Non-invasive MR thermography using the water proton chemical shift. Int J Hyperthermia 21:547–560

    Article  PubMed  CAS  Google Scholar 

  37. Kvadsheim PH, Folkow LP, Blix AS (1996) Thermal conductivity of Minke whale blubber. J Therm Biol 21:123–128

    Article  Google Scholar 

  38. Kvadsheim PH, Folkow LP, Blix AS (1994) A new device for measurement of the thermal conductivity of fur and blubber. J Therm Biol 19:431–435

    Article  Google Scholar 

  39. Lagendijk JJW, Rhoon GC van, Hornsleth SN et al (1998) ESHO quality assurance guidelines for regional hyperthermia. Int J Hyperthermia 14:125–133

    Article  PubMed  CAS  Google Scholar 

  40. Lee ER, Sullivan DM, Kapp DS (1992) Potential hazards of radiative electromagnetic hyperthermia in the presence of multiple metallic surgical clips. Int J Hyperthermia 8:809–817

    Article  PubMed  CAS  Google Scholar 

  41. De Leeuw AAC, Crezee J, Lagendijk JJW (1993) Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9(5):685–697

    Article  Google Scholar 

  42. Lutgens L, Zee J van der, Pijls-Johannesma M et al (2010) Combined use of hyperthermia and radiation therapy for treating locally advanced cervical carcinoma. Cochrane Gynaecological Cancer Group (ed) The cochrane collaboration, Issue 1. Wiley, http://www.thecochranelibrary.com

  43. Mantel F, Frey B, Haslinger S et al (2010) Combination of ionising irradiation and hyperthermia activates programmed apoptotic and necrotic cell death pathways in human colorectal carcinoma cells. Strahlenther Onkol 186:587–599

    Article  PubMed  Google Scholar 

  44. Milani V, Pazos M, Issels RD et al (2008) Radiochemotherapy in combination with regional hyperthermia in preirradiated patients with recurrent rectal cancer. Strahlenther Onkol 184:163–168

    Article  PubMed  Google Scholar 

  45. Ott OJ, Issels RD, Wessalowski R (2010) Hyperthermia in oncology—principles and therapeutic outlook. Uni-Med Verlag AG, Bremen

  46. Peller M, Muacevic A, Reinl H et al (2004) MRI-assisted thermometry for regional hyperthermia and interstitial laser thermotherapy. Radiologe 44:310–319

    Article  PubMed  CAS  Google Scholar 

  47. De Poorter J, Wagter CD, De Deene Y et al (1995) Noninvasive MRI thermometry with the proton resonance frequency _PRF_method: in vivo results in human muscle. Magn Reson Med 33:74–81

    Article  Google Scholar 

  48. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122

    PubMed  CAS  Google Scholar 

  49. Quesson B, Zwart JA de, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12:525–533

    Article  PubMed  CAS  Google Scholar 

  50. Rau B, Wust P, Gellermann J et al (1998) Phase-II-Studie zur pr operativen Radio-Chemo-Thermo-Therapie beim lokal fortgeschrittenen Rektum-Karzinom. Strahlenther Onkol 174(11):556–565

    Article  PubMed  CAS  Google Scholar 

  51. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800

    Article  PubMed  CAS  Google Scholar 

  52. De Senneville BD, Quesson B, Moonen TCW (2005) Magnetic resonance temperature imaging. Int J Hyperthermia 21:515–531

    Article  Google Scholar 

  53. Valvano JW, Cochran JR, Diller KR (1985) Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int J Thermophys 6:301–311

    Article  Google Scholar 

  54. Valvano JW, Chitsabesan B (1987) Thermal conductivity and diffusivity of arterial wall and atherosclerotic plaque. Lasers Life Sci 1:219–229

    Google Scholar 

  55. Valvano JW, Allen JT, Bowman HF (1981) The simultaneous measurement of thermal conductivity, thermal diffusivity, and perfusion in small volumes of tissue. ASME 81-WA/HT-21

  56. Wal E van der, Frankena M, Wielheesen DHM et al (2008) Steering in locoregional deep hyperthermia: evaluation of common practice with 3D-planning. Int J Hyperthermia 24:682–693

    Article  PubMed  Google Scholar 

  57. Tilly W, Gellermann J, Graf R et al (2005) Regional hyperthermia in conjunction with definitive radiotherapy against recurrent or locally advanced prostate cancer T3 pN0 M0. Strahlenther Onkol 181:35–41

    Article  PubMed  Google Scholar 

  58. Wust P, Gellermann J, Harder C (1998) Rationale for using invasive thermometry for regional hyperthermia of pelvic tumors. Int J Radiat Oncol Biol Phys 41:1129–1137

    Article  PubMed  CAS  Google Scholar 

  59. Yarmolenko PS, Moon EJ, Landon C et al (2011) Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 27(4):320–343

    Article  PubMed  Google Scholar 

  60. Van der Zee J, Gonzalez Gonzalez D, Van Rhoon GC et al (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355(9210):1119–1125

    Article  Google Scholar 

  61. Van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Atzelsberg Clinical Circle of the IAH for their constructive comments and their continuous stimulation to prepare the quality assurance document for regional deep hyperthermia.

Conflict of interest

On behalf of all authors, the corresponding author states the following: the authors have no financial interest in any company selling hyperthermia treatment and planning equipment. The opinion of the authors is solely based upon the available scientific knowledge and their personal experience in the clinical application of hyperthermia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bruggmoser.

Additional information

The authors of this document are also members of the Atzelsberg Circle in the IAH of the “Deutsche Krebsgesellschaft”.

Electronic supplementary material

66_2012_176_MO1_ESM.pdf

Deutsche Version "Leitlinie für die klinische Applikation, die Dokumentation und die Analyse klinischer Studien bei der regionalen Tiefenhyperthermie" (PDF 1,9 MB)

7 Appendix

7 Appendix

7.1 Applicator requirements

7.1.1 Minimum requirements

An applicator for deep hyperthermia has to meet certain requirements with regard to the characteristics of the energy distribution in order to have the basic ability to provide preferential heat to tumours located centrally in the human body. Ideally, the energy deposition in the target volume is higher than the energy deposition in healthy tissue. To obtain this feature, focusing of the energy distribution is essential as well as the ability to steer the focus. Based on phantom results a minimum ratio of energy deposition in the target (SARtarget) and energy deposition in the healthy tissue (SARnon-target) is defined [5].

A proposal for three conditions for a standardised hyperthermia test phantom for the checking of applicator characteristics in the range 75–140 MHz is as follows:

  • phantom of diameter 20 cm and length 60 cm,

  • abdomen-equivalent tissue material (2 g/l NaCl in distilled water), i.e. effective conductivity (σ) 0.32 S/m at 20 °C and relative dielectric permittivity (εr) 80 and

  • definition of a centrally located cylindrical target volume of diameter 5 cm and length 10 cm, with the axial orientation of the target similar to that of the phantom.

Each applicator used in deep hyperthermia must be able to reach an average SAR level inside the target volume that is higher than the average SAR level in the whole phantom. Hence, for any applicator the ratio of SARtarget and SARnontarget in the phantom must be minimally above 1.5 in order to be considered as an applicator feasible to induce deep heating in the pelvic and abdominal regions. Whether an applicator fulfils this minimum criterion can be checked by measurements and simulations using the standardised hyperthermia test phantom, appropriate measuring devices and a QA protocol such as defined by the European Society for Hyperthermic Oncology (ESHO). The Rotterdam group calculated the ratio of SARtarget and SARnontarget in the phantom for the Sigma 60 and Sigma Eye applicators and found values of 3.0 and 4.3, respectively.

7.1.2 Requirements for clinical hyperthermia treatments

It is not possible to extract guidelines for hot spot levels from phantom measurements. To set a minimum requirement, the authors have therefore chosen a requirement based on current practice with the most frequently used device for deep hyperthermia, i.e. the Sigma 60, with which more than 5,000 patients have been treated with deep hyperthermia in Europe. For this device, the Rotterdam group has analysed their extensive modelling in 10 patients with locally advanced cervical cancer. This analysis provides sufficient data to select a maximum permitted SAR level for hot spots in healthy tissue in order to apply deep hyperthermia at an acceptable level of quality, i.e. to measure therapeutic temperatures in the target region. For these 10 patients Manufacturers of new deep hyperthermia equipment are expected to obtain the patients models through proper procedures and to make sure that these models are representative for the average dimensions of their patient population. these values are SARtumor = 74 ± 32 W/kg (mean ± 1 standard deviation) and for hot spots SARmax= 290 ± 100 W/kg (mean ± 1 standard deviation), with an input power to the Sigma 60 applicator of 700 W. In this analysis hot spots are defined as all hot spots with a total volume of 0.1% of the tissue volume (V0.1) with the highest SAR. This leads to the conclusion that hot spot SAR levels (in the 0.1th percentile) should generally not exceed the SARtarget by a factor of 4. Applicators that meet both criteria: SARtarget> 1.5 • SARnon-target and SAR0.1< 4 • SARtarget are generally able to heat a patient up to therapeutic temperatures.

7.2 Minimum requirements for hyperthermia treatment planning

Treatment positions are required to coincide with the position modelled in planning (maximum deviation 1 cm) in order to reliably simulate optimum treatment parameters using computer supported hyperthermia planning (HTP) [1, 7, 33]. The positioning of the patient is described in more detail in Section 4.2.1. Furthermore, control of the radio frequency emitted from the antenna is essential with an amplitude and phase accuracy better than 5%/5° in order to guarantee reliable modelling of the power distribution with HTP. Preferably, the SAR measurement sensors or the temperature measurement using non-invasive thermometry (NIT) for feedback of the current SAR or the temperature distribution calculated with the planning system can be used.

The image of a 3D dataset for the hyperthermia planning using a CT or MRT scan must be performed, as far as possible, in the treatment position during hyperthermia. This means that the imaging must be completed for example, in the patient position grid. The layer thickness of the planning data must be selected optimally for the E-field calculation method to be used later. For example, 5 mm for finite elements (FE) with tetraedral grids, or higher resolution for FDTD.

Hyperthermia planning is started by segmenting the different tissue types. Two levels of segmentation are distinguished:

  1. 1.

    Hounsfield unit (HU) based automatic segmentation. This is based on the Hounsfield values of raw CT data records. The tissue types lung, fat, muscle and bone can be automatically segmented. The bowel volume and the organs are usually segmented as muscle.

  2. 2.

    Full organ segmentation. Additionally for the HU based automatic segmentation, the bowel and organs of the pelvis are segmented separately.

If using the FE method on tetrahedron grids, it must be guaranteed that the side length of the tetrahedrons are smaller than 1/10th of the wavelength in the tissue, e.g. 90 MHz, muscle and smaller than 3 cm. The dielectric and temperature relevant tissue properties needed for the calculations can be obtained from well documented literature sources [6, 8, 11, 12, 17, 18, 19, 23, 26, 27, 28, 37, 38] or from individual measurements (http://www.brooks.af.mil/AFRL/HED/hedr/reports/dielectric/home.html; [53, 54, 55]).

In the case of sole SAR modelling, after segmenting and calculating the electromagnetic fields, a patient-specific optimisation routine should be implemented, which maximises the SAR coverage of the target area and minimises the energy deposit in the healthy tissue. Furthermore, it should be possible to define regions in which additional specific limit values can be specified for the optimisation.

An equivalent approach is necessary for temperature modelling, which maximises the temperature in the target area and limits it in the healthy tissue to absolute maximum temperature values [27]. That is, 44 °C in healthy tissue and 42 °C in bone marrow for 30 min. Thermal and perfusion properties can be found in the literature [37, 38, 53, 54, 55]. The impact of blood flow can be incorporated using either the bioheat equation or by modelling discrete vessels [6, 12, 35, 48].

The transfer of the optimum therapy parameter for the power control should preferably occur automatically/online, in order to minimise errors. The treatment position of the patient and the therapy parameters must be adequately documented for the patient documentation (see Section 5.2).

7.3 Documentation of medical history

Example: information about disease, previous history and treatment planning

General information:

  • patient identification

  • date of birth

  • patient identification number

Disease information:

  • current disease

    • date of diagnosis: DDMMYYYY

    • examining physician

    • histology

    • medical history of current disease

      • first symptoms

      • date of first symptoms

      • duration of symptoms

      • Karnofsky status at time of diagnosis

      • previous diseases

      • other information

  • family medical history (if relevant)

    • diseases suffered by family members (parents and siblings)

  • co-existing diseases

    • diabetes mellitus: yes/no

    • heart disease: yes/no

      • if yes, heart failure: yes/no

    • thrombosis < 3 months (embolism risk)

    • Oedema in the therapy region or directly bordering it: yes/no

Personal information:

  • occupation(s)

  • social history

    • living situation

    • number of children

  • alcohol consumption

  • nicotine consumption (cigarettes, cigars, pipe smoking)

  • height (m)

  • weight (kg)

  • pregnant: yes/no

  • currently claustrophobic: yes/no

Clinical examination results:

  • general condition

  • external examination

  • internal examination

  • neurology

Previous therapies:

  • pre-treatments

    • radiation therapy

    • chemotherapy

Justification for therapy:

  • curative or palliative

  • neoadjuvant: yes/no

Contraindications:

  • pacemaker/defibrillator/neurostimulator: yes/no

  • metal implants: yes/no

  • other possible contraindications

    • burning: yes/no

    • abscess: yes/no

    • skin damage: yes/no

    • recent operation scar: yes/no

Consent form:

  • written consent provided: yes/no

Objective of the treatment:

  • treatment as part of a study or series of case studies: yes/no

    • description of the study or case studies

  • information about the treatment volume based on the 3D imaging

    • target volume

    • risk volume

Treatment plan:

  • radiation therapy

    • CT supported 3D planning

    • planned reference dose: xx.x Gy

    • fractionation: x times per week

    • fractionation dose: x.x Gy/week

  • chemotherapy

    • details

  • hyperthermia

    • information about the treatment volume

      • planning target volume (PTV)

      • positioning of the patient in the applicator (longitudinal, vertical)

    • volume at risk

    • verification

      • probe thermometry, MR thermometry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruggmoser, G., Bauchowitz, S., Canters, R. et al. Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia. Strahlenther Onkol 188 (Suppl 2), 198–211 (2012). https://doi.org/10.1007/s00066-012-0176-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0176-2

Keywords

Schlüsselwörter

Navigation